Lead Information Packet
Module 2: Thermal Transfer $6^{\text {th }}$ Grade

This document is not intended to give you all of the information you need to lead the module. It is only intended to be a reference during the module. You can find the complete instructions at scitrek.chem.ucsb.edu/module as well as the notebook and picture packet used during the module.

Important Things to Remember During the Module

1. You are responsible for keeping track of time in the classroom and making sure ALL activities run smoothly. There will be a time card in the lead box with suggested times to start/stop each activity.
2. You are responsible for keeping volunteers and students on track.
3. Walk around during times volunteers are working with students, and help struggling groups/subgroups/teams.

Types of Documents:

Notebook:
One given to every student and is filled out by the student. The lead will use a notebook to write in as an example for students. The notebook the lead uses is referred to as the class notebook in these instructions.
Notepad:
One given to every group and is filled out by the volunteer. In these instructions, the examples are narrower and taller than the notebook pages.
Picture Packet:
One per class that, if needed, the lead fills out. In these instructions, the examples are the same size as the notebook pages but are labeled.

In these instructions, all other example documents are labeled.

Day 1: Analysis Assessment/Observations/Variables

Schedule: You are responsible for BOLD sections
Introduction (SciTrek Lead) - 2 minutes
Analysis Assessment (SciTrek Lead) - 15 minutes
Observation Discussion (SciTrek Lead) - 5 minutes
Observations (SciTrek Volunteers) - 19 minutes
Variable Discussion (SciTrek Lead) - 5 minutes
Variables (SciTrek Volunteers) - 12 minutes
Wrap-Up (SciTrek Lead) - 2 minutes

Preparation:

1. Make sure volunteers are writing their name and group color on the whiteboard.
2. Make sure volunteers are passing out nametags.
3. Make sure volunteers are setting up for the initial observation.
4. Set up the document camera for the analysis assessment and class question (notebook, front cover).
5. Set up the lead set-up.
a. Place a graduated cylinder, beaker, scale, weigh boat, stir plate, and stir bar on a tray to show/demonstrate during the observation discussion.
6. Pass out the analysis assessments.

Introduction: (2 minutes - Full Class - SciTrek Lead)

- Allow volunteers to introduce themselves.
- Introduce the module.

Analysis Assessment: (15 minutes - Full Class - SciTrek Lead)

- Questions 1-3: Have students underline controls, circle changing variable(s), and box information about data collection, on the results tables. Then, have students answer the questions about each results table and possible conclusion.
- Pass out clear rulers to students.
- Question 4: Have students annotate the graph by underlining the controls, circling the changing variable, and boxing information about data collection, in the title, axes titles, and legend.
- Have students answer questions $4 b-4 f$ on their own.
- Collect assessments and rulers.

Observation Discussion: (5 minutes - Full Class - SciTrek Lead)

- Have volunteers pass out notebooks.
- Have students fill out the front cover of their notebooks.
- They will not fill out their subgroup number, team/subgroup symbol, or class question.
- Review the definition of an observation (a description using your five senses).
- Ask students, "What is a chemical reaction?"
- A process in which one or more substances are altered into one or more different substances.
- Ask students, "How might you know if a chemical reaction has happened?"
- Temperature change, formation of a gas, color change, etc.
- Introduce class question: "What variables affect the temperature change of the chemical reaction?"
- Write the class question on the front cover of the class notebook, and have students copy the question onto their notebook.
- Demonstrate the equipment we will use in this module:
- Show how to tare the scale, using a weigh boat.
- Show how to use the stir plate and stir bar.
- Show how to use the thermometer.
- Discuss the max/min function.
- Remind students to close the thermometer, to reset this function.
- Have students move to their groups.
- If a student does not have a nametag, identify the group color with the least number of students in it and write the student's name on one of the extra nametags in the lead box using that color of marker.

Observations: (19 minutes - Groups - SciTrek Volunteers)

- Make sure volunteers are not telling students the common names of the substances
- We will not call them salt or baking soda—only sodium chloride and sodium hydrogen carbonate.
- Walk around and help groups who are struggling.
- Make sure groups are moving along and only spending ~ 7 minutes on the experimental set-up.
- If students ask what the temperature change would be in Fahrenheit, you can tell them, a temperature change of $\sim 9-10^{\circ} \mathrm{C}$, corresponds to a change of $\sim 16-18^{\circ} \mathrm{F}$.

Variable Discussion: (5 minutes - Full Class - SciTrek Lead)

- Have groups share what they did/learned.
- They pour three different solids into water. Bubbles were produced and the solution got warmer. They using the initial temperature and max temperature they were able to calculated the temperature change of the reaction.
- Have students discuss how they know a chemical reaction occurred.
- Review the class question: What variables affect the temperature change of the chemical reaction?
- Review the definition of a variable (something in an experiment that can be changed).
- Explore one possible changing variable with the class and have students share how and why this variable might affect the temperature change.

Variables: (12 minutes - Groups - SciTrek Volunteers)

- Walk around and help groups who are struggling.
- Make sure volunteers are having their group come up with three possible variables, as well as how and why these variables might affect the temperature change.
- Make sure students are generating at least one additional variable by themselves.

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Have each group share one variable with the class, as well as how and why they think this variable will (or will not) affect the temperature change.
- Go over what students will do next session.

Day 2: Question/Materials Page/Experimental Set-Up/Procedure/Results Table

Schedule: You are responsible for BOLD sections
Introduction (SciTrek Lead) - $\mathbf{1 2}$ minutes
Question (SciTrek Volunteers) - 9 minutes
Materials Page (SciTrek Volunteers) - 7 minutes
Experimental Set-Up (SciTrek Volunteers) - 8 minutes
Procedure (SciTrek Volunteers) - 18 minutes
Results Table (SciTrek Volunteers) - 3 minutes
Wrap-Up (SciTrek Lead) - $\mathbf{3}$ minutes
*If there is extra time, do the claim, data, opinion extra practice (notebook, page 31)

Preparation:

1. Make sure volunteers are setting out notebooks in such a way that allows students within the same subgroup to work together.
2. Set up the document camera for the question (notebook, page 4), materials page (lead box), experimental set-up (notebook, page 5), and results table (picture packet, page 1).

Introduction: (12 minutes - Full Class - SciTrek Lead)

- Review the class question as well as what students did and learned last session.
- Review experimental considerations with the class (notebook, page 4, top):
- You will only have access to the materials on the materials page.
- If you are not changing stir speed, the stir speed must be level 2.
- See materials page for restrictions on experimental design.
- Design an example experiment with the class.

○ For the changing variable, pick one variable (Ex: CaCl_{2} mass; notebook, page 4).

- Show students how to write the question.
- If we change the $\underline{\mathrm{CaCl}}_{2} \underline{\text { mass, }}$, what will happen to the temperature change of the reaction?
- Fill out the materials page for the example experiment (lead box).
- Read step 1 and have students tell you what to do for each bolded word (underline controls and circle changing variables).
- Go through the list of general materials, and check them off.
- Show students a scoopula and tell them what the tool is used for.
- Read steps 2 and 3. You should choose the control values, but let students choose the three changing variable values.
- Remind students to pick changing variable values that are spread out.
- Write trial letters underneath the changing variable values.

- Fill out the experimental set-up for the example experiment (only Trials A and B for the changing variable; notebook, page 5).
- Draw an additional line under the controls list for another control and its value.
- If students choose to change two variables, there will be one additional blank for controls. Lead students to come up with "stir speed/level 2."
- Read the example procedure step that includes the changing variable (notebook, page 6, top).
- Show students the filled-out results table (picture packet, page 1) and explain how they will fill out their results tables and make predictions.

Question: (9 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Encourage subgroups to pick different changing variables.
- Make sure volunteers are not giving advice on how many changing variables to use.
- Make sure, for the second part of the question (what you are calculating), students are specific (they should write, "the temperature change of the reaction," and not just "the temperature change").

Materials Page: (7 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure subgroups are underlining their controls and circling their changing variable(s).
- Make sure subgroups are filling out the materials page correctly and completely.

Experimental Set-Up: (8 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure, within one subgroup, all students have the same order for their changing variable(s) values.
- Make sure all control blanks are filled out.

Procedure: (18 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure procedures are concise, but still include all values of the controls, and changing variable(s), as well as the data that will be collected and the calculation that will be performed.
- Students within each subgroup can vary the wording in their procedures, as long as the steps are in the same order and correct values are included.

Results Table: (3 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure students are underlining controls, circling the changing variable(s), and boxing data collection boxes.
- Make sure control values are written in the Trial A box, with an arrow through the rest of the trials' boxes, while changing variable(s) values are written in each trial's box.
- Make sure students are making predictions for which trial they think will produce the smallest (S) and largest (L) temperature changes.

Wrap-Up: (3 minutes - Full Class - SciTrek Lead)

- Go over what students will do next session.

Extra Time:

- On this day there is often extra time. If so, go over page 31 in the notebook, which gives students practice on distinguishing between claim and data statements. Do not do any more than page 31 of the extra practice.

Day 3: Experiment/Analysis Activity

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) - $\mathbf{2}$ minutes

Experiment (SciTrek Volunteers) - 28 minutes
Analysis Activity (SciTrek Lead) - $\mathbf{2 8}$ minutes
Wrap-Up (SciTrek Lead) - 2 minutes

Preparation:

1. Make sure volunteers are setting out notebooks.
2. Make sure volunteers are setting up for the experiment.
3. Set up the document camera for the analysis activity (notebook, page 8-10).

Introduction: (2 minutes - Full Class - SciTrek Lead)

- Review the class question.
- Remind students to tare scales, wipe thermometers between trials, and close thermometers after each trial to reset the "Max/Min" function.
- Remind students to keep the lid on the calcium chloride, as much as possible.
- Tell students, "You can label the graduated cylinders, weight boats, and/or beaker, with a wet erase maker."

Experiment: (28 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure students are:
- labeling the beakers with the wet erase pen.
- closing the CaCl_{2} lid, when not in use.
- closing, and wiping off, the thermometer, in between trials.
- recording the maximum temperature, with units, and subtracting to find the temperature change.
- Remove beakers, weigh boats, etc., as soon as students are done with them.
- Put beakers, stir bars, CaCl_{2} weigh boats, and any liquid, in the buckets.
- Put graduated cylinders, back into their box
- Put water bottles, back into their box.
- Put the stir plates, back into their box.
- All other materials go into the group boxes.
- Wipe down tables with a white rag from the lead box.

			RESULT		
	setics.	tank foceach of wer tias a, draw in atrow arract minaments to the retre	for tor vatinle th bax inchatir nh (Dx 2.10	at reraincorota that the woriatie in	withe the sale in cortrol Mameriter to
		Variables	Triat A	Trial ${ }^{\text {B }}$	Trialc
		Gumatar fine	neaker		\rightarrow
		watrecslume:	50 mL		
		Cochemass:	6.09		
		Matco, Mixe	0.09	4.09	239
		hacmins	2.09	0.39	6.99
		tir Stoed	Level 2		
		medition	trata	Trais	traic
			5		L
		a and Calculatios	Trata	Triala	trialc
	1	$\begin{gathered} \text { intai } \\ \text { hemportonec: } \end{gathered}$	$20.0{ }^{\circ} \mathrm{C}$	$19.8{ }^{\circ} \mathrm{C}$	$19.8{ }^{\circ} \mathrm{C}$
	$\frac{1}{3}$	tomperase (c)	$42.5{ }^{\circ} \mathrm{C}$	$35.7{ }^{\circ} \mathrm{C}$	$40.7{ }^{\circ} \mathrm{C}$
	告	Onc	felt hot	felt warn: lots of bulables	felt warme medium bublles
	皆		$\begin{aligned} & 42.5^{\circ} \mathrm{C} \\ & -20.0^{\circ} \mathrm{C} \\ & 22.5^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 288^{\prime \prime} 7^{\circ} \mathrm{C} \\ & =19.8^{\circ} \mathrm{C} \\ & 15.9^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 38.7^{\circ} \mathrm{C} \\ & -19.8^{\circ} \mathrm{C} \\ & 20.9^{\circ} \mathrm{C} \end{aligned}$

- Make sure to start the analysis activity at least 25 minutes before the end of the session.
- Question 1: Review the definition of a conclusion (claim supported by data; notebook, page 8).
- Review the definition of a claim (a statement that can be tested).
- Read the example claim and have students tell you the changing variable (ball mass) and circle it.
- Discuss and fill in what claims include (changing variable).
- Review the definition of data (evidence collected from experiments.
- Read the example data statement and have students tell you the changing variable values and circle them ($360 \mathrm{~g}, 100 \mathrm{~g}$) as well as the data values and box them ($1.2 \frac{\mathrm{~m}}{\mathrm{~s}}, 1.1 \frac{\mathrm{~m}}{\mathrm{~s}}$).
- Discuss and fill in the types of data (measurements, and observations.)
- Discuss and fill what is also in data statements (changing variable).
- Question 2: Read the directions aloud to the class.

SCIENTIFIC PRACTICES Andying a interpreting Data

> 4. prectione pilartivemisulg, defintiocs.

- conchalorr A claink supported by data
- coministatemert that can be zested the explantion of the data, the frst part of a concluaion.
- Exthoblimasy ioes not affect the speed af which it rulk down a ramp
- A dabtin ascientilic eapermere often ixdadesto shanging variale.
- Dasa Eafence coflected trum expeament(s)(measurements or sbservations), the secondpart of a conclusion
 \&
- Detain a wientiti expermantinclude weosurbwents ar abcervations.

2. Drections: On the resuhts tables axd conclunisns betiow, underine coutralus) croch

Chagging varisteb and bor information abou tatacollectiva Ther, deside if the possitie conciasions torrector not

a)	Variablen	Triala	Trialis	Trialc	Thatio
	Contwiner Irae	forwer			
	Selidemais:	20. ${ }^{2}$			
	frlathuse	60g			
	sotaic.Mnis	Sos	7.0 e	9.05	11.0.5
	Itrinuad:	Madam			
	Sota	Triaia	Tras	Trialc	Truse
	Tompeaturu Chages	$85^{\circ} \mathrm{C}$	10.5	18.0	127 T
$1:$	Otuer:	$\begin{aligned} & \text { Mastra } \\ & \text { Briveroem } \end{aligned}$	Macefoume	Frumfised to the to.	$\begin{aligned} & \hline \text { Cverflowes } \\ & \text { withtoaes } \end{aligned}$

If NO, whot is worong with the condirdon?

- Annotate the results table and possible conclusion by underlining controls, circling changing variables, and boxing information about data collection.
- Annotate sections a and b as a class, then, have students try $c-e$ on their own, while you do them off to the side of the document camera.
- Help students decide whether the conclusion is correct or incorrect by using the following questions:
- What type of statement is after the 'because' and how do you know?
- If the statement is data (contains a measurement or observation)
- Is this a correct conclusion? (No)
- What is wrong with the conclusion? (Claim and data switched)
- Move onto next conclusion
- If the statement is a claim (can be tested)
- What is the changing variable in this claim?
- Is this a changing variable in this experiment? (Yes)
- Is the claim consistent with the results table?
- If No
- Is this a correct conclusion? (No)
- What is wrong with the conclusion? (Incorrect claim)
- Move onto next conclusion
- If Yes, and 1 changing variable
- What type of statement is after the 'because' and how do you know? (Data, because it contains a measurement or an observation)
- Is the data consistent with the results table? (Yes)
- Is this a correct conclusion? (Yes)
- Move onto next conclusion.
- If Yes, and 2 changing variables
- What type of statement is after the 'because' and how do you know? (Data, because it contains a measurement, or an observation)
- Is the data consistent with the results table? (Yes)
- Is this a fair conclusion? (No, because the change could be due to the other changing variable.)
- Is this a correct conclusion? (No)
- What is wrong with the conclusion? (More than 1 changing variable)
- For question 3, make sure students understand, they can only have one changing variable in order to make a conclusion, and write 1 on the line.

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Go over what students will do next session.

Day 4: Conclusion/Technique/Analysis Activity

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) - $\mathbf{3}$ minutes
Conclusion (SciTrek Volunteers) - 10 minutes
Findings Discussion (SciTrek Lead) - 10 minutes
Technique (SciTrek Lead) - 15 minutes
Analysis Activity (SciTrek Lead) - 20 minutes
Wrap-Up (SciTrek Lead) - 2 minutes

Preparation:

1. Make sure volunteers are setting out notebooks.
2. Set up the document camera for the findings discussion (picture packet, page 2), technique activities (notebook, pages 12-13), and analysis activity (notebook, pages 14-16).

Introduction: (3 minutes - Full Class - SciTrek Lead)

- Review the class question, as well as what students did and learned last session.
- Review what they learned about conclusions.
- What is a conclusion?
- A claim supported by data
- What is a claim and what does it usually include?
- A statement that can be tested, which may include the changing variable
- What type of information can be used for data?
- Measurements or observations
- What else do we often see in a data statement?
- Values of the changing variable
- Can the claim and data statements be in any order for a conclusion?
- No, the claim must come first, followed by the data that supports it.
- How many changing variables can we have, in order to make a conclusion, and why?
- One, if we test more than one changing variable at the same time, there is no way of telling which variable affected the data.

Conclusion: (10 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Subgroups who can make a conclusion will need more help than those who cannot.
- If a subgroup can make a conclusion, make sure they are making a claim, and using specific data to support that claim.

Findings Discussion: (10 minutes - Full Class - SciTrek Lead)

- Put the Findings page (picture packet, page 2) under the document camera.
- Have subgroups share out what they learned from their first experiment, and record it.
- Make sure to record "only change one variable" under Experimental Design.

Technique: (15 minutes - Full Class - SciTrek Lead)

- Have volunteers pass out clear rulers.
- Go through the instructions for how to draw trend lines; draw trend lines for both graphs with students.
- Read, and discuss, the directions for how to interpret trend lines, and then fill in the lines in question 1.
- Make sure to use the word 'flat,' rather than 'straight,' when describing trend lines that show no trend, because all lines are straight.
- Answer question 1 as a class.
- Show students the challenge with drawing a trend line on graph 3.
- Put the ruler along with the points in three different ways (showing three potentially correct trend lines) and ask students, "Which placement is correct?" (see examples right)
- Lead students to understand it is impossible to tell which way is correct because the points are too close together (answer question 2).
- Add "spread out changing variable values" to the Findings (picture packet, page 2) under Experimental Design.
- Turn to page 13 in the notebook and read the scenario aloud to the students.
- Shows students how to annotate the graph titles.
- Do not underline solid B mass, solid C mass, or water volume, yet.
- Have students draw trend lines for, graphs 1 and 2, independently, while you do the same off to the side of the document camera. Let them check their work after approximately 1 minute.
- Lead students to identify the three controls in the title of graph 1, and the one control in the title of graph 2.
- Discuss with students that these graph titles are different because the scientists in graph 1 all picked different control values, while the scientists in graph 2
 collaborated to choose two of the control values.
- Introduce vocabulary:
- Class Control: A control that everyone in the class has the same value for.
- For this example, there is no class control.
- Team Control: A control that everyone in a team has the same value for, but values vary for different teams within a class.
- Graph 2: solid B mass and water volume
- Subgroup Control: A control that everyone in a subgroup has the same value for, but values vary for different subgroups within a team
- Graph 1: solid B mass, solid C mass, and water volume
- Graph 2: solid C mass
- Label the controls under graph 2 as either "subgroup control," or "team control."
- Label the trend lines on graph 2 with their subgroup control values.
- Answer question a as a class.
- Discuss with students which trend line they should use to answer question b and why.
- Walk students through using the black circle trend line to determine the expected temperature change. You should predict approximately $7^{\circ} \mathrm{C}$. Tell students, "Your prediction should be within $2^{\circ} \mathrm{C}$ of the class's prediction."
- Discuss that trend lines allow us to make predictions from our graphs, making them an important tool. Write this for question b.
- Discuss which graph is more useful for making predictions and answer question c.
- Walk students through using graph 2 to determine the expected temperature change ($\sim 6^{\circ} \mathrm{C}$).
- Make sure students understand their predicted trend line should fall closer to the 5.0 g trend line, than to the 8.0 g trend line.
- Ask students, "What did the scientists do, that made graph 2 more useful in making predictions?" Add "choose common control values within teams" to the Findings (picture packet, page 2) under Experimental Design and use this to answer question d on page 13.

Analysis Activity: (18 minutes - Full Class - SciTrek Lead)

- Make sure, on this day, you get through at least page 16, but continue onward if you have more time.
- It is helpful to give volunteers copies or page 14-17 of the notebook and have them sit next to students that will need extra help and fill them out along side of them.
- Read the scenario at the top of page 14 of the notebook aloud, and point out that the scientists collaborated by making water volume a class control.
- Have students annotate and draw/label trend lines on the team 1 graph on their own. Give them approximately 1 minute, while you do so to the side of the document camera, then let them check their work.
- Fill out question $1 a$ as a class.
- As a class, complete question $1 b$, which allows students to make a prediction using one trend line.
- Repeat this process for question 2 (notebook, page 15).
- Make sure students understand, that solid B mass does not affect the temperature change, and this is a valid and important finding (not a mistake).
- This time you will need to draw in a predicted
 trend line halfway between the white and grey diamonds, using a dashed line.
- Do this by drawing dots halfway between the end points of the two trend lines, then connecting the dots.
- Repeat this process for question 3 (notebook, page 16)
- Show students they can cross out number of workers, since it does not affect the power output.
- This time have students work on questions $3 b$ and $3 c$ on their own, while you do so off to the side of the document camera, then let them check their work.
- Tell students, "Predictions are correct if they are within $2^{\circ} \mathrm{C}$ of the one in the class notebook."

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Go over what students will do next session.

Day 5: Analysis Activity/Discussion/Question/Experimental Set-Up/Procedure/Results Table

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) - $\mathbf{2}$ minutes
Analysis Activity (SciTrek Lead) - 10 minutes
Class Plan Discussion (SciTrek Lead/Volunteers) - $\mathbf{1 0}$ minutes
Team Plan Discussion (SciTrek Volunteers) - 7 minutes
Question (SciTrek Volunteers) - 5 minutes
Experimental Set-Up (SciTrek Volunteers) - 5 minutes
Procedure (SciTrek Volunteers) - 14 minutes
Results Table (SciTrek Volunteers) - 5 minutes
Wrap-Up (SciTrek Lead) - $\mathbf{2}$ minutes

Preparation:

1. Make sure volunteers know what team they will work with once students form teams.
2. Make sure volunteers are passing out notebooks and rulers.
3. Set up the document camera to use for the analysis activity (notebook, pages 16-17), and class plan discussion (picture packet, page 3).

Introduction: (2 minutes - Full Class - SciTrek Lead)

- Review the class question and show students their findings from last time (picture packet, page 2).
- Remind students that they were learning about trend lines and review what we know so far about solid A, solid B, and solid C masses (notebook, page 14-16).
- As the solid A mass goes up, the temperature change goes down.
- The solid B mass does not affect the temperature change.
- As solid C mass goes up, the temperature change goes up.

Analysis Activity: (10 minutes - Full Class - SciTrek Lead)

- Turn to page 17, and tell students, "We will now put all of the teams' data together to make a prediction."
- Have students annotate and draw/label trend lines on both graphs, on their own, while you do so to the side of the document camera; then let them check their work.
- Ask students, "Why has team 2's graph been left out?" Possible student response: solid B mass does not affect the temperature change.
- Cross off solid B mass in both control charts.
- As a class, determine the predicted temperature change from Team 1's graph.
- Have students determine the predicted temperature change from Team 2's graph, on their own, then share out.
- Show students how to average their two predictions to find the final expected temperature change (for the class notebook, this value should be $7.5^{\circ} \mathrm{C}$).

Class Plan Discussion: (10 minutes - Full Class - SciTrek Lead)

- Review the Finding, Experimental Design (picture packet, page 2) and what this means for the next experiment that subgroups design.
- Tell students, "We are going to break into teams, to investigate each changing variable."
- Have students identify the changing variable that will be investigated (NaHCO_{3} mass, CaCl_{2} mass, or NaCl mass) as well as the class controls (water volume and stir speed).
- Record class controls and their values (Water Volume/anything between $20-60 \mathrm{ml}$ but between 40-50 ml is best and stir speed/level 2) on the Class Plan (picture packet, page 3).
- Have subgroups rank their top 3 choices for their changing variable. Use the subgroup fair sticks (lead box) to allow them to select the team. Record these on the Class Plan. Make sure to have two subgroups per team.

Team Plan Discussion: (7 minutes - Teams - SciTrek Volunteers)

- Walk around and help teams who are struggling.
- Make sure volunteers have students write their team and subgroup symbol on the front covers of their notebooks.
- Make sure volunteers fill out the team plan correctly and have students pick subgroup control values that are spread out.
- Make sure students are following the restrictions for each substance and choosing values to the nearest tenth of a gram.

Question: (5 minutes - Teams - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure for the second part of the question (what you are calculating) students are specific (they should write, "the temperature change of the reaction," and not just "the temperature change").

Changing Variabes (Independert Variatrots))
For your second experiment, decode wirich variabile(s) (max two) you would Ike to test.

Changing Varnablet $\mathrm{NaH}+\mathrm{CO}=\mathrm{MASS}$
Changing variatie 2 (optiona):
qUESTION
Guestion our sibgroup wil imestigate:

* If we charge the NAHCO, m.aSS what will hap in to the teniperature reactios \qquad

Use the following constraiets to wlect your changing variable values:

- Goll, masses must be between 3.0 g ant 6 g g (orighal 3.9 g)

Sefected changing varibile values:

EXPERIMENTAL SET-UP
Wrte your dangige variade(s) (Ear NaCl miss) and the velues (fx : 2.0 al you will use for your tralk under each beaker.

Why did your suthroup chrose these vabues of the changheg variable: We spread out our changing variakle vabues so our data points will also be spread out.

Controls (varibles you will hold constant):

typeleritur)

Experimental Set-Up: (5 minutes - Teams - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure within one subgroup all students have the same order for their changing variable values.
- Make sure all control blanks are filled out.

Procedure: (14 minutes - Teams - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure procedures are concise, but still include all values of the controls and changing variable, as well as the data that will be collected and the calculation that will be performed.
- Students within each subgroup can vary the wording in their procedures, as long as the steps are in the same order and correct values are included.

Results Table: (5 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure students are underlining controls, circling the changing variable, and boxing data collection boxes.
- Make sure control values are written in the Trial D box with an arrow through the rest of the trials' boxes, while changing variable values are written in each trial's box.
- Make sure students are making predictions for which trial they think will produce the smallest (S) and largest (L) temperature changes.

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Go over what students will do next session.

Day 6: Experiment/Graph/Conclusion

Schedule: You are responsible for BOLD sections
Introduction (SciTrek Lead) - 8 minutes
Experiment (SciTrek Volunteers) - 24 minutes
Graph (SciTrek Volunteers) - 18 minutes
Conclusion (SciTrek Volunteers) - 8 minutes
Wrap-Up (SciTrek Lead) - 2 minutes

Preparation:

1. Make sure volunteers are setting out notebooks.
2. Make sure volunteers are setting up for the experiment.
3. Set up the document camera for the Introduction (picture packet, pages 1, 4, and 5; notebook page 23).

Introduction: (8 minutes - Full Class - SciTrek Lead)

- Review the class question, as well as what students did and learned last session.
- Use the checklist (picture packet, page 4, top) to go over how to graph results.
- The filled-out results table used to make the graph is on page 1 of the picture packet.
- Talk students through the process of completing their graphs (picture packet, page 4).
- Show what the completed team graph should look like (picture packet, page 5).

- Review the definition of a conclusion (a claim supported by data).
- Have students generate a conclusion from the data, using subgroup (Δ) data (picture packet, page 5).
- We can conclude the greater the water volume, the smaller the temperature change because when the water volume was 21 mL , the temperature change was $12.4^{\circ} \mathrm{C}$ (biggest) and when the water volume was 57 mL , the temperature change was $6.1^{\circ} \mathrm{C}$ (smallest).
- Tell students, "When you make your conclusions, you will use your entire team's graph to come up with a claim, but you will use two specific data points, from your own subgroup data, to support the claim."
- Remind students to tare scales, wipe thermometers between trials, and close thermometers after each trial, to reset the "Max/Min" function.
- Remind students to keep the lid on the calcium chloride, as much as possible.

Experiment: (24 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure students are:
- labeling the beakers with the wet erase pen.
- closing the CaCl_{2} lid, when not in use.
- closing, and wiping off, the thermometer, in between trials.
- recording the maximum temperature, with units, and subtracting to find the temperature change.
- Remove beakers, weigh boats, etc., as soon as students are done with them.
- Put beakers, stir bars, CaCl_{2} weigh boats, and any liquid, in the buckets.
- Put graduated cylinders, back into their box.
- Put water bottles, back into their box.
- Put the stir plates, back into their box.
- All other materials go into the group boxes.
- Wipe down tables with a white rag from the lead box.

Graph: (18 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure students are writing the numerical value of the temperature change above the points for their own subgroup's data.
- Make sure students are graphing the data for the other subgroups in their team (do not let them label these points).
- Make sure students are drawing trend lines for each set of points.

Conclusion: (8 minutes - Subgroups - SciTrek Volunteers)

- Walk around and help subgroups who are struggling.
- Make sure subgroups are generating a claim (ideally the claim will allow them to make a prediction about future experiments), and using two specific data points to support it.
- Subgroups will be using calculations as their data; make sure they are including numerical values in their data statements.
- Do not let subgroups reference trial letters in their conclusions.
- Volunteers struggle with conclusions, so you should check at least one conclusion from each team.
- Make sure students fill out the sentence frame (notebook, page 23), I acted like a scientist when.
- If there is time, students should use their team graphs to fill out the Team Predictions (notebook, page 23).

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Ask students the following questions:
- How did you act like a scientist during this project?
- What did you do, that scientists do?

Day 7: Poster Making/Poster Presentations

Schedule: You are responsible for BOLD sections

Introduction (SciTrek Lead) - $\mathbf{2}$ minutes
Poster Making (SciTrek Volunteers) - 25 minutes
Practice Posters (SciTrek Volunteers) - 5 minutes
Poster Presentations (SciTrek Volunteers/SciTrek Lead) - 26 minutes
Wrap-Up (SciTrek Lead) - 2 minutes

Note: Timing is tight on this day. It is possible the class will only get through two of the three presentations during the allotted time. In this case, the teacher will need to lead the third poster presentation, outside of SciTrek time, before the next SciTrek session.

Preparation:

1. Make sure notebooks have been highlighted, stickered, and numbered. If not, use the poster diagram page to have volunteers do this before starting SciTrek.
2. Make sure volunteers are setting out notebooks.
3. Set up the document camera to use for the Notes on Presentations (picture packet, page 6).

Introduction: (2 minutes - Full Class - SciTrek Lead)

- Review the class question, what students did and learned last session, as well as what they will do today.

Poster Making: (25 minutes - Subgroups - SciTrek Volunteers)

- Notebooks will have already been highlighted, numbered, and stickered. If a student is absent have the volunteer give that students notebook to another student to fill out the part. During the presentation the present student will have two notebooks to read out of.
- Make sure the students in each subgroup who is presenting a results table, has completely filled out the sentence frame sticker in their notebook.
- Make sure the students on each team who are presenting the Experimental Set-Up: Specific, Procedure, and Graph: General, have fill out the stapled sheet in their notebooks.
- Make sure the student that is presenting the Results Graph: Specific knows how to orally fill in the sentence frame with their data points.
- The Ways we Acted Like Scientists poster part can be filled out by one or multiple, student(s), as long as they have finished their assigned poster part first.
- Help volunteers glue poster pieces onto the posters. When gluing, make sure you or the volunteers (not the students) are gluing the poster in the exact order that is shown on the diagram and the poster has a landscape orientation.

Practice Posters: (5 minutes - Subgroups - SciTrek Volunteers)

- Do not give students more than 5 minutes to practice or you will run out of time for presentations.
- Organize posters so they are presented from easiest to understand, to hardest to understand (suggested order: NaHCO_{3} mass, CaCl_{2} mass, NaCl mass).
- Make sure students are reading from their notebooks, and practicing the poster in order: 1) scientists' names, 2) question, 3) experimental set-up: general, 4) experimental set-up: specific (staple sheet), 5a) results table \circ (sticker), 5b) results table Δ (sticker), 6) procedure (staple sheet), 7) graph: general (staple sheet), 8) graph: specific (sticker), and 9) conclusion. They will not read the Ways we Acted Like Scientists from their posters.

Poster Presentations: (31 minutes - Full Class - SciTrek Volunteers/SciTrek Lead)

- Have students present their posters.
- While posters are being presented, record each team's changing variable values and their data (picture packet, page 6) while students do the same (notebook, information on page 24 of their notebooks.
- After a team reads their question, stop the presentation and have the class identify the changing variable. Then, record it in the picture packet.
- When a team reads their results graph: specific, record the values of the changing variable and their measurements.
- After each presentation, ask students:
- What questions do you have for this team?
- Have students take approximately 30 seconds to write down one scientific question to ask this team. Then allow them to ask questions.
- Once students have asked their questions (make sure each student answers a question; you should ask at least one question per presentation), have students summarize what they learned and record it (picture packet, page 6); while students also record the
 summary (notebook, page 24).
- Students will not record information about their own team's poster presentation.
- After all presentations are over, have students tell you the variable values they would select to cause the largest temperature change.

Wrap-Up: (2 minutes - Full Class - SciTrek Lead)

- Tell students, "The mentors who have been working with you are undergraduate, and graduate, students, who volunteer their time so you can do experiments. This is the last day you will see your volunteers, so we should say thank you and goodbye."
- Have students remove the paper parts of their nametags (which they can keep) from the plastic holders and return the plastic holders to their volunteers.

Day 8: Analysis Assessment/Draw a Scientist/Tie to Standards/Content Assessment

Schedule: You are responsible for BOLD sections

Analysis Assessment (SciTrek Lead) - 10 minutes
Draw a Scientist (SciTrek Lead) - 5 minutes
Tie to Standards (SciTrek Lead) - 50 minutes
Content Assessment (SciTrek Lead) - 5 minutes

Preparation:

1. If the teacher is not leading the tie to standards activity, do the following:
a. Ask the teacher if they completed the SciTrek final survey. If not, give them the QR code from the lead box and ask them to go to the website (at a later time), and fill out the evaluation of the program.
b. Give the teacher an extra notebook and have them fill it out with their students, to follow along during the tie to standards activity.
c. Collect the teacher's lab coat, and put it in the lead box.
2. If you are a teacher and have not completed the SciTrek evaluation of the program, take the QR code from the lead box, and fill out the evaluation of the program, at a later time.
3. Pass out the analysis assessments and notebooks.
4. Set up the document camera for the tie to standards activity (notebook, pages 25-30; picture packet, pages 7-9).
5. Set up the temperature change demonstration (just like Day 1 experimental set-up).
6. Put your lab coat in the lead box at the end of the day.

Analysis Assessment: (10 minutes - Full Class - SciTrek Lead)

- Questions 1-3: Have students underline controls, circle changing variable(s), and box information about data collection on the results tables. Then, have students answer the questions about each results table, and possible conclusion.
- Pass out clear rulers to students.
- Question 4: Have students annotate the graph, by underlining the controls, circling the changing variable, and boxing information about data collection in the title, axes titles, and legend.
- Have students answer questions $4 b-4 f$.
- Have students answer the attitudes about science questions.
- Collect assessments.
- Leave clear rulers for students to use during the tie to standards activity.

Draw a Scientist: (5 minutes - Full Class - SciTrek Lead)

- Pass out the Draw a Scientist page.
- Give students exactly 4 minutes to draw a picture of a scientist.
- If the students drew a specific person, have them write who they drew on the line at the bottom of the page. Have them leave it blank if it is just a general person/picture.
- Collect assessments.

Tie to Standards: (40 minutes - Full Class - SciTrek Lead)

Class Findings (3 minute)

- Review the class findings, from the poster presentations from last session, and record the answer in question 1 (notebook, page 25).

Variations in Data (6 minutes)

- Discuss, with students, why scientists perform multiple trials and write the answer in question 2 (notebook, page 25).
- Introduce the median and range, as well as calculate both for the data given on question 3 (notebook, page 25).
- Tell students, "The data in the table is actual data I collected after performing one trial of the class experiment five times." Discuss what this means, and record it for question 4 (notebook, page 25).

Predicting Temperature Change (10 minutes)

- Tell students, "The SciTrek lab did several experiments similar to yours, but we performed each trial three times, and graphed the median results, these graphs are shown on page 26 of your notebooks."
- Ask students, "Why has the graph for NaCl mass been left out?" and record the answer in question 5.
- Annotate graph 1, and draw/label trend lines, as a class.
- Ask students, "Is graph 1 consistent with the class findings?" and circle YES.
- Have students annotate graph 2, and draw/label trend lines, on their own. Then let students check their work.
- Ask students, "Is graph 2 consistent with the class findings?" and circle YES.
- Have students use the graphs to make predictions about the temperature change of the reaction for the given amounts.
- For graph 1, they will use the \mathbf{X} trend line.
- For graph 2, they will have to draw in a predicted trend line between the O and Δ trend lines.
- Show students how to find the temperature change halfway between the two predictions, and write it in the Expected Temperature Change box.
- If one predicted temperature change ends in '.5' and the other ends in '. 0 ,' the average would technically end in '.25.' Use a money example to help students understand this,
then round to '. 3 ,' since masses are rounded to the nearest tenth.
- Perform the experiment, have students record the initial temperature and maximum temperature then do the subtraction to find the temperature change in the table on page 27.
- Answer question 8, by subtracting the predicted, and actual, temperature changes (start with whichever temperature change was larger).
- Discuss with students whether the prediction was correct
- Circle YES, for question 9, if the answer to question 8 is less than $1.2^{\circ} \mathrm{C}$ (the accepted range of variation).
- Discuss whether temperature change in a reaction is predictable, or not, and answer question 10.

Why Temperature Changes (14 minutes)

- Have students fill out the definition of temperature (notebook, page 29).
- Temperature is a measure of "kinetic energy," which is "the energy of motion."

7. What temperature chanqe was meanured when we mixed $4.0 \mathrm{~g} \mathrm{NaCl}, 3.0 \mathrm{~g} \mathrm{NatiCO}$, $10 . \mathrm{Bg} \mathrm{CaCl}$, and 50 mL water?

8. How far was the measured tenperatire charge from the expected temperature change?

$$
\begin{array}{r}
28^{\circ} 5^{\circ} \mathrm{C} \\
-167^{\circ} \mathrm{C} \\
\hline
\end{array}
$$

9. Can we consider our eapected temperature change correct?
 NO
10. Is the temperature chacge in the reation precactable:

so

- Tell students, "If the kinetic energy is low, particles in a substance are moving slowly, and the temperature is low." Have students fill out the first diagram on question 12.
- Have students fill out the second diagram, on their own, then let them check their work.
- Show students the pictures of the substances they mixed in the reaction (picture packet, pages 7-9), then have students describe the pictures, and record their answers, for question 13.
- While you write observations about the substances with the students, have a volunteer, or the teacher, pass out water bottles, graduated cylinders, and Experiment 1 bags, to every ~3 students, and collect the clear rulers.

- Show students how to set up the reaction in the Experiment 1 bag.
- Have one student in each group measure 50 mL water in the graduated cylinder.
- Have another student tilt the bag so the solids all go in one corner, then pinch the corner and twist the bag a few times so all substances are contained in one side.
- Have the third student pour the water into the other side of the bag, and close the zipper (have a volunteer, or the teacher, do this for you).
- Once everyone is ready, count down from 3 and release the solids at the same time, shaking the bag so all substances mix together.
- Have students describe what happened during the reaction and what is left after the reaction as well as record observations on question 14.

- Fill out question 15 by asking students, "Did a chemical reaction happen, and how do you know?" (notebook, page 29).
- Tell students, "Energy cannot be created or destroyed." Circle NO, for question 16.
- Ask students, "Where did the heat energy come from that made our reaction feel hot?"
- Tell students, "Substances store energy, which can be transferred to kinetic energy during chemical reactions."
- Energy was thus "released" by the reaction (question 17).
- Discuss if all substances store the same amount of energy and lead students to understand they do not. Then, answer question 18.
- Discuss the trends for each substance and answer question 19.
- Make sure students understand that temperature and kinetic energy are directly proportional.

Cold Reactions (7 minutes)

- Discuss with students whether they think it is possible to make this same reaction feel cold (without switching out any of the substances).
- Yes, because adding more NaHCO_{3} makes the temperature change decrease.
- Discuss question 20, and by the end of the conversation, make sure students understand, with these amounts, the reaction would feel cold, because the temperature change will be negative.
- Pass out experiment 2 bags, follow the same procedure as in experiment 1, and have students share observations (reaction should feel cold).
- Discuss with students where the heat energy went.
- Energy was "absorbed" by the reaction
(question 21).
- Discuss the two ways that chemical reactions can transfer energy (question 22).
- Have students help you summarize what they learned about the transfer of energy in chemical reactions and record this for question 23.

20. What would happen if we mived 2.0 g of $\mathrm{NaHCO}_{>} 3.0 \mathrm{~g}$ of $\mathrm{CaO}-40 \mathrm{~g}$ ot NaCl , and 50 mi . of water' 'Graph is shows agan below to help you). The reacticu will fesi cold, hesause the tencperature shenge will be negative.

21. When a chemicd reaction gets colder, energy thas been \qquad
\qquad 22. Chesnical reactions can absorb release enendy.
22. The energy iransferredin a chemical reattion is affected by:

Type nf substance
Mass

Content Assessment: (5 minutes - Full Class - SciTrek Lead)

- Pass out content assessments.
- Read each question to students.
- Collect content assessments.

Extra Practice Solutions:

