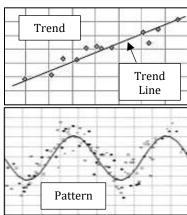
Group Color:	
Subgroup Number:	
Team/Subgroup Symbol:	1

How Science Works

Grade 6

Module 2


C	lass Question:	

Scientist (Your Name): _	
Teacher's Name:	
SciTrek Volunteer's Name:	

VOCABULARY

Science: The study of the material world using human reason. The scientific method is the way humans reason and apply logic to data to help gain knowledge of the world.

- Observation: A description using your five senses. This could include contents, mass, size, color, temperature, smell, texture ...
- o **Opinion:** Something you believe or feel. Not a fact or observation.
- o **Inference:** A guess based on past experiences.
- o **Testable Question:** A question for which an experiment can be designed to answer.
- Non-Testable Question: A question for which an experiment cannot be designed to answer. For example, questions
 involving things that cannot be measured/observed or things that are not well defined/opinions.
- o **Experimental Set-Up:** The materials, changing variable, and controls that are needed for an experiment.
- o **Experiment:** A test or trial to discover something unknown.
- o **Procedure:** A set of steps to conduct an experiment.
- o **Controls:** The variables that are not changed in an experiment.
- o Class Control: A control that everyone in the class has the same value for.
- Team Control: A control that everyone in a team has the same value for, but values vary for different teams within a class.
- Subgroup Control: A control that everyone in a subgroup has the same value for, but values vary for different subgroups within a team.
- o Changing Variable (Independent Variable): The variable that is purposely changed in an experiment.
- Results/Data (Dependent Variable): The measurements/observations of the experiment, which are
 influenced/determined by the changing variable.
- Prediction: What you expect to happen based off of previous measurements/observations.
- Scientific Practices: A series of activities that scientists participate in to both understand the world around them
 and to communicate their results with others. The specific practice worked on in this module is analyzing and
 interpreting data.
- o **Technique:** A method for a specific task.
- Conclusion: A claim supported by data.
- Claim: A statement that can be tested. The explanation of the data, the first part of a conclusion.
- Data: Evidence collected from experiment(s) (measurements or observations);
 the second part of a conclusion.
- Analysis: A scientific practice involving examining data critically and looking for patterns and trends.
- o **Trend:** When data changes in one general direction; can go up or down.
- o Trend Line: A line drawn on a graph to represent the direction of a trend
- Pattern: When data repeats in a predictable manner; can go up, down, and up again.
- Chemical Reaction: A process where one or more substances are altered into one or more different substances. Evidence of a chemical reaction can include: formation of a gas, and/or a change in color, smell, or temperature.
- Graduated Cylinder: A piece of laboratory equipment used to measure the volume of a liquid.
- o Beaker: A piece of laboratory equipment used to contain chemicals and conduct chemical reactions.
- o **Tare:** To zero the scale.
- Heat: A form of energy associated with the movement of particles in a material (also called "thermal energy").
 When two systems are in contact, heat flows from the hotter system to the cooler system.
- o **Kinetic Energy:** Energy of motion.
- Temperature: A physical property which measures the kinetic energy of particles in a substance; the faster the
 particles are moving, the higher the temperature.
- o **Median:** The middle number in a series of measurements.
- Range: The difference between the biggest and smallest measurements.

OBSERVATIONS

Experimental Set-Up:

Formula	Substance Name	Physical Description	Amount
Initial Water Te	emperature:		
Describe what	happened during the expe	eriment.	
			\dashv

VARIABLES

Variable	How will changing this variable affect the temperature change of the reaction?		

Experimental Considerations:

- 1. You will only have access to the materials on the materials page.
- 2. If you are not changing stir speed, the stir speed must be level 2.
- 3. See materials page for restrictions on experimental design.

Changing Variable(s) (Independent Variable(s))
You will get to perform two experiments. For your first experiment, decide which variable(s) max two) you would like to test. For each changing variable you select, discuss with your subgroup why you think that variable will affect the temperature change.
Changing Variable 1:
Changing Variable 2 (optional):
QUESTION
Question our subgroup will investigate:
If we change the insert each changing variable (independent variable)
what will happen to the
?

Get a materials page from your volunteer and fill it out before moving onto the experimental set-up.

SciTrek Member Approval: _

EXPERIMENTAL SET-UP

Write your changing variable(s) (Ex: NaCl mass) and the values (Ex: 2.0 g) you will use for your trials under each beaker.

	A E	B E	C E
Changing Variable(s):			
1) :			
2) :			
Controls (variables you will hold co Write your controls and the values you v type/beaker).		ials (control/value, Ex	k: container
Container Type / Bea	ker	1	

SciTrek Member Approval: _____

PROCEDURE

Procedure Note:

Make sure to include all values of your changing variable(s) in the procedure. Ex: For a subgroup that decided to change sodium chloride (NaCl) mass one step would be: Measure A) 2.0 g, B) 4.5 g, and C) 8.0 g of NaCl in a weigh boat.

2.	
3.	
<i>-</i>	
1	
4.	
_	
٥٠	
•	
0.	
7.	
8.	
	SciTrek Member Approval:

RESULTS Table

Fill out the table for each of your trials. For the variables that remain constant, write the value in *Trial A*. Then, draw an arrow through each box indicating the variable is a control. Remember to record measurements to the nearest tenth (Ex. 2.1 g).

	Variables	Trial A	Trial B	Trial C
Container Type:		Beaker —		
Water Volume:				
CaCl₂ Mass:				
	NaHCO₃ Mass:			
	NaCl Mass:			
	Other Variable			
sma	Predictions In "S" in the trial that will give the llest temperature change and an in the trial that will give the largest temperature change.	Trial A	Trial B	Trial C
D	ata and Calculations	Trial A	Trial B	Trial C
ements:	Initial Temperature (°C):			
Measurements:	Maximum Temperature (°C):			
Observations:	Other:			
Calculations:	Temperature Change (°C): $\Delta T = T_{max} - T_{min}$			

• C • C • C • C • C • C • C	Conclusions:	is: Fill in the missing defusion: A statement that can busion. Ex: The ball mass does not a claim in a scientific extended from distriction and part of a conclusion. Ex: When the ball mass we not go, its speed was 1.1 \frac{m}{s}. Data in a scientific experiments also of the results tables are ariable (s), and box information.	not affect the periment often experiment include vand conclusion	speed at which includes the (s) (measurend peed was 1.2 $\frac{m}{s}$, esalues of thes	ch it rolls downer nents or obse and when the or erline control(vn a ramp. ervations), the ball mass was (s), circle
• C • D so change conclu	Data:	Ex: The ball mass does reaction. A claim in a scientific exected from dispart of a conclusion. Ex: When the ball mass we not go its speed was 1.1 m/s. Data in a scientific experiments also of the results tables are ariable so, and box information.	not affect the periment often n experiment(vas 360 g its sp vriment include ften include v	speed at which includes the (s) (measurend peed was 1.2 $\frac{m}{s}$, esalues of thes	ch it rolls downer nents or obse and when the or erline control(vn a ramp. ervations), the ball mass was (s), circle
• D so change	Data: Secon	Ex: The ball mass does not a claim in a scientific ex Evidence collected from d part of a conclusion. Ex: When the ball mass we now g, its speed was 1.1 \frac{m}{s}. Data in a scientific expendata statements also of the results tables are ariable(s), and box informations.	not affect the periment often n experiment(vas 360 g its sp vriment include ften include v	speed at which includes the (s) (measurend peed was 1.2 $\frac{m}{s}$, esalues of thes	ch it rolls downer nents or obse and when the or erline control(vn a ramp. ervations), the ball mass was (s), circle
• D so change	Data: Secon	Ex: The ball mass does not a claim in a scientific ex Evidence collected from d part of a conclusion. Ex: When the ball mass we now g, its speed was 1.1 \frac{m}{s}. Data in a scientific expendata statements also of the results tables are ariable(s), and box informations.	not affect the periment often n experiment(vas 360 g its sp vriment include ften include v	speed at which includes the (s) (measurend peed was 1.2 $\frac{m}{s}$, esalues of thes	ch it rolls downer nents or obse and when the or erline control(vn a ramp. ervations), the ball mass was (s), circle
• Directi	Data: secon	Ex: The ball mass does read a claim in a scientific ex Evidence collected from d part of a conclusion. Ex: When the ball mass we now g, its speed was 1.1 $\frac{m}{s}$. Data in a scientific expendata statements also of On the results tables are ariable(s), and box informations.	periment often n experiment(vas 360 g its sp riment include ften include v	en includes the (s) (measurem beed was 1.2 $\frac{m}{s}$, es alues of the s below, unde	e nents or obse and when the or erline <u>control</u> (ball mass was
. Direct i	Data: secon	A claim in a scientific ex Evidence collected from d part of a conclusion. Ex: When the ball mass w 100 g, its speed was 1.1 m/s. Data in a scientific expe Data statements also of On the results tables ar ariable(s), and box infor	periment often n experiment(vas 360 g its sp riment include ften include v	en includes the (s) (measurem beed was 1.2 $\frac{m}{s}$, es alues of the s below, unde	e nents or obse and when the or erline <u>control</u> (ball mass was
. Direct i	Data: secon	Evidence collected from d part of a conclusion. Ex: When the ball mass we now g, its speed was 1.1 m/s. Data in a scientific experiments also of the results tables are ariable (s), and box information.	vas 360 g its sp vaiment includ ften include v	(s) (measuren beed was 1.2 ^m / _s , es alues of the _ s <u>below, unde</u>	and when the oror	ball mass was (s), circle
. Direct i	econ	d part of a conclusion. Ex: When the ball mass we now g, its speed was 1.1 m/s. Data in a scientific experiments also of the results tables are ariable(s), and box informations.	vas 360 g its sp riment includ ften include v	eed was 1.2 $\frac{m}{s}$, es alues of the s below, unde	and when the or erline control(ball mass was (s), circle
Directi Chang conclu	• • ging v	Ex: When the ball mass we now g, its speed was 1.1 m/s. Data in a scientific expertage Data statements also of the results tables are ariable(s), and box informals.	riment includ ften include v nd conclusion	esalues of the _ s below, unde	oror	(<u>s)</u> , circle
chang conclu	• ions:	100 g, its speed was 1.1 $\frac{m}{s}$. Data in a scientific expe Data statements also of On the results tables ar ariable(s), and box infor	riment includ ften include v nd conclusion	esalues of the _ s below, unde	oror	(<u>s)</u> , circle
chang conclu	ions:	Data in a scientific expe Data statements also of On the results tables ar ariable(s), and box infor	riment includ ften include v nd conclusion	alues of the _	erline <u>control(</u>	(<u>s)</u> , circle
chang conclu	ions:	Data statements also of On the results tables ar ariable(s), and box info	ften include v	alues of the _	erline <u>control(</u>	(<u>s)</u> , circle
chang conclu	ions: ging v	On the results tables ar	nd conclusion	s <u>below, unde</u>	erline <u>control(</u>	<u>(s)</u> , circle
chang conclu	ions: ging v	On the results tables ar	nd conclusion	s <u>below, unde</u>	erline <u>control(</u>	<u>(s)</u> , circle
,		is correct or not. Variables	Trial A	Trial B	Trial C	Trial D
		Container Type:	Beaker	I I I a I D	IllaiC	THAI D
		Solid A Mass:	2.0 g			-
		Solid B Mass:	6.0 g			-
		Solid C Mass:	5.0 g	7.0 g	9.0 g	11.0 g
	Stir Speed:		Medium			—
		Data	Trial A	Trial B	Trial C	Trial D
monte.	ments/ ations:	Temperature Change:	8.5℃	10.5°C	18 . 1°C	22.7°C
M	Measurements/ Observations:	Other:	Made a little foam	Made foam	Foam filled to the top	Overflowed with foam
becaus	se wh	nclusion: The greater the en the solid C mass was		mperature cha	-	

If NO, what is wrong with the conclusion? ______.

Analyzing & Interpreting Data

	`
h	١.

	Variables	Trial A	Trial B	Trial C	Trial D
	Container Type:	Beaker			
	Solid A Mass:	6.0 g			
	Solid B Mass:	10.0 g			
	Solid C Mass:	8.0 g			
	Stir Speed:	Slow	Medium	Fast	Super-Fast
	Data	Trial A	Trial B	Trial C	Trial D
ments/ ions:	Temperature Change:	13.0°C	12.1°C	11.3°C	10.2°C
Measurements/ Observations:	Other:	Made foam	Made a little foam	Made foam	Made a little foam

Possible Conclusion: The greater the stir speed, the higher the temperature change, because when the stir speed was slow, the temperature change was 13.0°C, and when the stir speed was super-fast, the temperature change was 10.2°C.

is this a correct conclusion?	YES	NO	I DON'I KNOW

If NO, what is wrong with the conclusion?

	`
$^{\circ}$)
_	,

	Variables	Trial A	Trial B	Trial C	Trial D
	Container Type:	Beaker			
	Solid A Mass:	2.0 g	4.0 g	6.0 g	8.o g
	Solid B Mass:	5.0 g			
	Solid C Mass:	5.0 g			
	Stir Speed:	Medium			-
	Data	Trial A	Trial B	Trial C	Trial D
nents/ ions:	Temperature Change:	7.1°C	5.8°C	3.7°C	2.9°C
Measurements/ Observations:	Other:	Overflowed with foam	Foam filled to the top	Made foam	Made a little foam

Possible Conclusion: The greater the solid A mass, the less foam is produced, because We observed when the solid A mass was 2.0 g, the beaker overflowed with foam, but when the solid A mass was 8.0 g the beaker had only a little bit of foam.

Is this a correct conclusion?	YES	NO	I DON'T KNOW
If NO, what is wrong with the conclusion? _			

Analyzing & Interpreting Data

		Variables	Trial A	Trial B	Trial C	Trial D
d)	Container Type:		Beaker			
		Solid A Mass:	6.0 g			
		Solid B Mass:	10.0 g	12.0 g	14.0 g	16.0 g
		Solid C Mass:	8.o g			
	Stir Speed:		Medium			
	Data		Trial A	Trial B	Trial C	Trial D
	ments/ ions:	Temperature Change:	11.5°C	10.2°C	12 . 0°C	10.8°C
	Measurements/ Observations:	Other:	Made a little foam	Made more foam	Foam filled to the top	Overflowed with foam

Possible Conclusion: We observed, when there were 16.0 g of solid B, the reaction overflowed with foam, and when there were 10.0 g of solid B, the reaction made a little foam, because the greater the solid B mass, the more foam is made.

Is this a correct conclusion? YES NO I DON'T KNOW

If NO, what is wrong with the conclusion?

e)	Variables		Trial A	Trial B	Trial C	Trial D
	Container Type:		Beaker			
	Solid A Mass:		2.0 g	3.0 g	4.0 g	5.0 g
		Solid B Mass:	5.0 g			
		Solid C Mass:	8.o g	6.0 g	4.0 g	2.0 g
	Stir Speed:		Fast			
	Data		Trial A	Trial B	Trial C	Trial D
	ments/ ions:	Temperature Change:	13.3°C	10.8°C	8.1°C	5.9°C
	Measurements/ Observations:	Other:	Overflowed with foam	Foam filled to the top	Made foam	Made a little foam

Possible Conclusion: The smaller the solid A mass, the higher the temperature change, because when the solid A mass was 2.0 g, the temperature change was 13.3°C, and when the solid A mass was 5.0 g, the temperature change was 5.9°C.

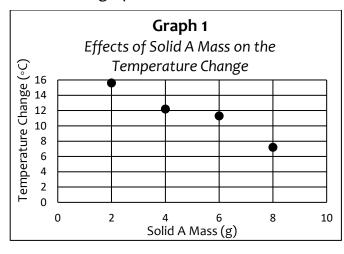
Is this a correct conclusion?	YES	NO	I DON'T KNOW
If NO, what is wrong with the conclusion	?		
3. How many changing variables can you ha	ave in order to	make a conclu	sion?

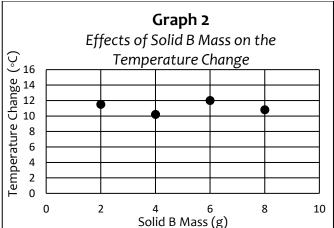
CONCLUSION

Making a Conclusion from Your Data

How many changing variables did you have in your experiment?
Can you make a conclusion from your data? YES NO
IF NO
Why?
IF YES
We can concludeclaim
becausedata (measurements/observations/calculations)

SciTrek Member Approval:

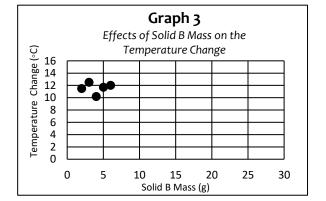

TECHNIQUE


Trend Lines

Trend lines are used to find trends in data on graphs.

How to draw a trend line:

- 1. Position your ruler on the graph so it goes along with the direction of the points and places half the points above the ruler and half the points below the ruler. When positioned correctly, all points should be as close as possible to the ruler.
- 2. Trace along the ruler with your pencil. Always extend trend lines to both edges of the graph.

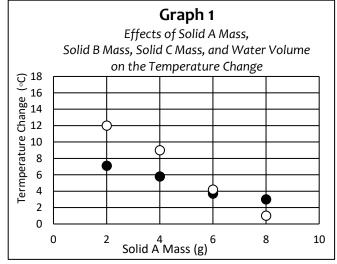

How to interpret trend lines:

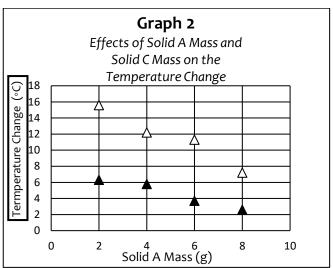
- If the line is increasing (), or decreasing (), there is a trend.
- If the line is flat (), there is no trend.
- **1. Directions:** Answer the questions using Graphs 1 and 2.
 - a) Which graph(s) represent a changing variable that affects the data? 1 2
 - b) Which changing variable affects the data?

 A
 B
 - Describe the trend by filling in the following sentence frame:

As solid mass increases, the temperature change

2. Directions: Answer the question using Graph 3. What is the challenge in drawing a trend line on this graph?




TECHNIQUE

Designing Experiments

Four UCSB scientists were studying the temperature change in a chemical reaction by examining solid A mass, solid B mass, solid C mass, and the water volume used. They all picked solid A mass as their changing variable. Two scientists worked independently, and they used different control values for solid B mass, solid C mass, and water volume (Graph 1). The other two scientists collaborated, and they picked the same control values for solid B mass and water volume (Graph 2).

3. Directions: Annotate the graphs and draw trend lines for each experiment.

Controls					
Scientist Symbol	Solid B Mass	Solid C Mass	Water Volume		
•	6.0 g	5.0 g	60 mL		
0	10.0 g	8.o g	100 mL		

Controls					
Scientist Symbol	Solid B Mass	Solid C Mass	Water Volume		
A	6.0 g	5.0 g	70 mL		
Δ	6.0 g	8.0 g	70 mL		

- a) Does solid A mass affect the temperature change of the reaction? **YES**If YES, describe the trend by filling in the following sentence frame:
 - As solid A mass increases, the temperature change
- b) What is the temperature change when the following are mixed: 3.0 g of A, 6.0 g of B,

5.0 g of C, and 60 mL of water?

Expected Temperature Change:

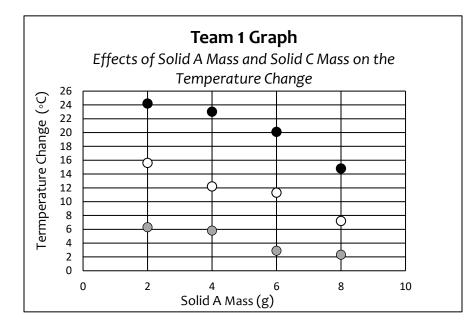
A, 6.0 g of B, 6.0 g of C, and 70 mL of water?

- c) Can you predict what the temperature change would be if the scientists mixed 6.0 g of
 - If YES, which graph is more useful to make your prediction?

ES NO

Fire stad Town sections Changes

1 2


Expected Temperature Change:

d) What does this mean for your experimental design? _____

Analyzing & Interpreting Data

A large group of scientists collaborated by dividing into three teams to study the effects of solid A mass, solid B mass, solid C mass, and water volume on the temperature change in a chemical reaction. The three teams agreed to keep the water volume constant at 70 mL for ALL experiments/trials. Now, they need your help to analyze the data.

1. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

Controls				
Scientist	Solid B	Solid C		
Symbol	Mass	Mass		
•	6.0 g	12.0 g		
0	6.0 g	8.0 g		
0	6.0 g	5.0 g		

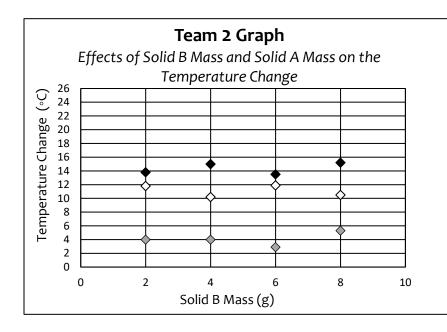
a) Does solid A mass affect the temperature change of the reaction? YES NO

If YES, describe the trend by filling in the following sentence frame:

- As solid A mass increases, the temperature change
- b) What temperature change would you expect to calculate with the following amounts?

Solid A Mass	5.0 g
Solid B Mass	6.0 g
Solid C Mass	8.0 g

What experiment(s) do you need to look at?



Expected Temperature Change:

Analyzing & Interpreting Data

2. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

Controls		
Scientist Solid A		Solid C
Symbol	Mass	Mass
•	3.0 g	8.0 g
\Diamond	6.0 g	8.0 g
\langle	9.0 g	8.0 g

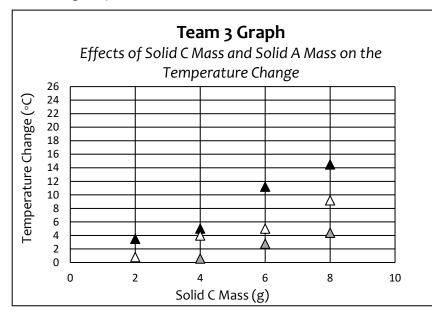
a) Does solid B mass affect the change in temperature of the reaction? YES NO

If YES, describe the trend by filling in the following sentence frame:

b) What temperature change would you expect to calculate with the following amounts?

Solid A Mass	7.5 g
Solid B Mass	5.0 g
Solid C Mass	8.0 g

What experiment(s) do you need to look at?



Expected Temperature Change:

Analyzing & Interpreting Data

3. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

	Controls			
Scientist	Scientist Solid A			
Symbol	Mass	Mass		
	2.0 g	7.0 g		
Δ	6.0 g	7.0 g		
Δ	10.0 g	7.0 g		

a) Does solid C mass affect the change in temperature of the reaction? YES NO

If YES, describe the trend by filling in the following sentence frame:

- As solid C mass increases, the temperature change ________.
- b) What temperature change would you expect to calculate with the following amounts?

Solid A Mass	2.0 g
Solid B Mass	3.0 g
Solid C Mass	8.o g

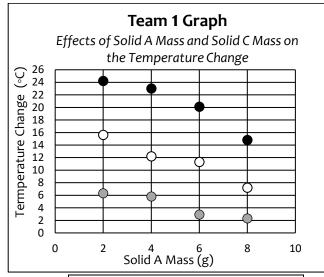
Expected Temperature Chan	ge:
	_

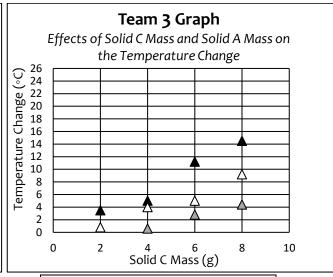
What experiment(s) do you need to look at?

c) What temperature change would you expect to calculate with the following amounts?

Solid A Mass	5.0 g
Solid B Mass	7.0 g
Solid C Mass	10.0 g

Expected Temperature Change:


What experiment(s) do you need to look at?



Analyzing & Interpreting Data

The lab wants to know if the trends in their data can be used to predict the temperature change for different combinations of solid A mass, and solid C mass, which have not been tested yet. Use team 1 and 3 graphs to help the lab interpret the data.

4. Directions: Annotate the graph, draw trend lines for each experiment, and label trend lines with subgroup control values.

Controls		
Scientist	Solid C	
Symbol	Mass	Mass
•	6.0 g	12.0 g
0	6.0 g	8.0 g
0	6.0 g	5.0 g

Controls		
Scientist	Solid A	Solid B
Symbol	Mass	Mass
A	2.0 g	7.0 g
Δ	6.0 g	7.0 g
Δ	10.0 g	7.0 g

a) Using <u>both</u> of the graphs above, what temperature change would you expect to calculate with the following amounts?

Solid A Mass	4.0 g
Solid B Mass	10.0 g
Solid C Mass	6.0 g

Team 1 Prediction:

Team 3 Prediction:

What experiment(s) do you need to look at?

Team 1:

 \mathcal{C}

Team 3:

Λ

Α	
$\overline{}$	

Expected Temperature Change:

Changing Variables (Indepen	ident Variable	(s))		
For your second experimentest.	t, decide whic	ch variable(s) (max two) you w	ould like to
Changing Variable 1:				
Changing Variable 2 (option	nal):			
	QU	ESTION		
Question our subgroup will	investigate:			
If we change the	insert e	each changing variab	le (independent varial	ole) ,
what will happen to t	he	insert what	vou are calculating	
				7
Use the following constrain	its to select yo	our changing v	ariable values:	
 NaHCO₃ masses m 	ust be betweer	n o.o g and 4.og	(original 2.4 g)	
CaCl₂ masses must	be between 3.	o g and 6.o g (o	riginal 3.9 g)	
NaCl masses must	be between o.	o g and 8.0 g (o	riginal 6.0 g)	
Selected changing variable	values:			
	D	E	F	G
<u>1)</u> :				
2)				
	C - *T	- L- 0.0 L 0		
	SCHTE	ek Member Ap	pi ovai:	

EXPERIMENTAL SET-UP

Write your changing variable(s) (Ex: NaCl mass) and the values (Ex: 2.0 g) you will use for your trials under each beaker.

Why did your subgro	up choos	se these valu	es of the chan	ging variable? ₋	
1) 2)	:				
Changing Variable(s):		D F	E E	F E	G

Controls (variables you will hold constant):

Write your controls and the values you will use in all your trials (control/value, Ex: container type/beaker).

Class and Team Co	ontrols:	Subgroup Control:
Container Type /	Beaker	

SciTrek Member Approval: _____

PROCEDURE

Procedure Note:

	Make sure to include all values of your changing variable(s) in the procedure. Ex: For a subgroup that decided to change sodium chloride (NaCl) mass one step would be: Measure D) 2.0 g, E) 4.0 g, F) 6.0 g, and G) 8.0 g of NaCl in a weigh boat.
1.	
7	
۷.	
3.	
٠.	
4.	
•	
5.	
6.	
7.	
8.	
	SciTrek Member Approval:

RESULTS

Table

Check the box of your subgroup control and write your subgroup symbol on the line. Then, fill out the table for each of your trials. For the variables that remain constant, write the value in *Trial D*. Then, draw an arrow through each box indicating the variable is a control. Remember to record measurements to the nearest tenth (Ex. 2.1 g).

30	ingroup Control. Li Nanc	O ₃ Mass \square Co	dCI2 IVIdSS	Subgroup Sym	iboi
	Variables	Trial D	Trial E	Trial F	Trial G
Container Type:		Beaker			-
	Water Volume:				
	CaCl₂ Mass:				
	NaHCO ₃ Mass:				
	NaCl Mass:				
	Other Variable				
	Predictions	Trial D	Trial E	Trial F	Trial G
sma	in "S" in the trial that will give the llest temperature change and an n the trial that will give the largest temperature change.				
D	ata and Calculations	Trial D	Trial E	Trial F	Trial G
ments:	Initial Temperature (°C):				
Measurements:	Maximum Temperature (°C):				
Observations:	Other:				
Calculations:	Temperature Change (°C): $\Delta T = T_{max} - T_{min}$				

The independent variable is the changing variable and the dependent variables are the maximum temperature and other.

RESULTS

						Grap	h				
Set u	p your gra	ph. (Ch	eck off	the ste	ps as yo	u comple	te them	.)			
	Write the	title for	your gra	aph by fi	illing in t	he blanks					
	Label the	y-axis (v	ertical)	with wh	at you c	alculated,	includin	g units (Ex: Tempe	rature Change	(°C)).
	-	•	•		-			-	•	aCl₂ Mass (g)).	• • •
	Select you	r subgro	oup con	trol in th	ne legen	d by chec	king the	appropr	iate box. T	hen, put <u>your</u> :	subgroup
	control va	lue next	t to you	r subgro	oup syml	ool.	_				
Plot y	our data.										
	On the x-a	xis, circl	e your 4	4 changi	ng varia	ble values	. If a valu	ue is not	there, writ	e it in.	
	Starting w	ith the s	mallest	changir	ng variab	le value,	determir	ne the te	mperature	change, and p	out your
	subgroup	symbol	at the a	ppropri	ate level	. Write th	e tempe	rature cl	nange next	to the point.	
	Once you	have plo	tted all	4 points	s, draw a	a trend lin	e that be	est fits yo	our data.		
Plot t	he data co	llected	by the	other su	ıbgroup	<u>in your t</u>	eam.				
	Complete	the lege	nd for t	he othe	r subgro	up in you	r team b	y writing	g their subg	group control	
	value next	t to theii	r subgro	oup sym	bol.						
	Graph the	other su	ubgroup	's 4 poi	nts using	g their syr	nbol as t	he mark	ers (do not	label these po	oints). Then,
	draw a tre	nd line t	hat bes	t fits the	eir data.						
_											
Ej	ffects of _		insert o	hanging vari	able	and _	ins	sert subgroup	control		
		on the		nunging vun	иыс		1113	ен завыоар	Control		
		on the		i	insert what yo	ou calculated					
					•						
36	' I										
34	. 🛨 🔠										
32	: 🛨 🔠									Leg	gend
30	, I 									_	p Control:
28	1									_	HCO ₃ Mass
26	. ‡										l₂ Mass
24	+										
22	+ +									Subgroup	Subgroup
	+ -									Symbol	Control Value
20	+										7 47.010
18	+									0	
16	+										
14	. 🛨 🔠									Δ	
12	: +										
10	, I 										
8	1										
6	+ +										
	, 										
	+										
4	+										

CONCLUSION

Generate a claim about how your changing variable affected your subgroup's results. (Ex: The greater the water volume the smaller the temperature change.)	We can concludeclaim
What data do you have to support your claim? (Remember to include your measurements and/or observations, not trial letters.	because
I acted like a scie	entist when

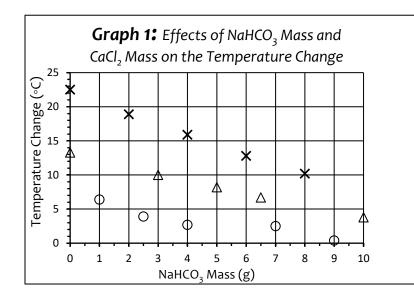
TEAM PREDICTIONS

Use your team graph to predict the temperature change for each subgroup if you were to use 3.5 g of your changing variable. Write your predictions in the table below.

Changing Variable Mass:						
3.5 g						
Subgroup Symbol	Prediction					
0						
Δ						

NOTES ON PRESENTATIONS

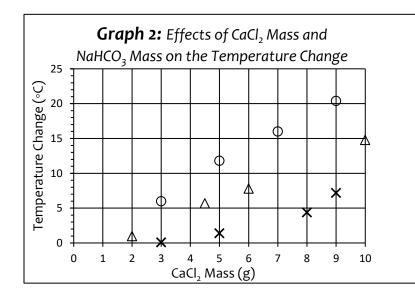
What variables affect the temperature change of the chemical reaction?


Changing Variable:	☐ NaHCO₃ Mass (g) ☐ CaCl₂ Mass (g) ☐ NaCl Mass (g)		
Temperature Chang			
Question:		 	
Summary:		 	
Changing Variable:	☐ NaHCO ₃ Mass (g) ☐ CaCl ₂ Mass (g) ☐ NaCl Mass (g)		
Temperature Chang			
Question:			
Summary:			

TIE TO STANDARDS

		n poster preser	
Does NaCl mass af	fect the temperature change?	YES	NO
If YES, describe the temperature characters	ne trend: The greater the NaCl mass, t nge.	the	th
Does NaHCO ₃ mas:	s affect the temperature change?	YES	NO
If YES, describe the temperature characters	ne trend: The greater the NaHCO $_3$ mange.	ss, the	t
Does CaCl₂ mass af	ffect the temperature change?	YES	NO
If YES, describe the temperature char	ne trend: The greater the CaCl2 mass, nge.	the	th
	nduct experiments, they often reptimes. Why?		
		llact a cariac at	different data
Substance	trials in an experiment, scientists co math tools called median and range to dian and range for the data in the to Temperature Change (°C):	to help analyze	
	math tools called median and range to the data in the tools	to help analyze i	the data.
Substance	math tools called median and range and range and range for the data in the formula to the data in the	to help analyze i	the data.
Substance Masses: o.o g NaHCO ₃ 4.o g NaCl	math tools called median and range in the dian and range for the data in the dian and range (°C): Temperature Change (°C): 11.9, 11.7, 12.1, 14.9, 13.4	to help analyze i	the data.

5. Annotate the graphs below, draw trend lines, label subgroup controls, and answer the questions.


Why has the graph for NaCl mass been left out?

Graph 1 Controls							
Experiment	CaCl ₂	NaCl	Water				
Symbol	Mass	Mass	Volume				
\circ	3.0 g	4.0 g	50 mL				
Δ	6.0 g	4.0 g	50 mL				
X	10.0 g	4.0 g	50 mL				

Does this graph show a trend that is consistent with the class findings?

YES NO

Graph 2 Controls							
Experiment	NaHCO₃	NaCl	Water				
Symbol	Mass	Mass	Volume				
\circ	0.0 g	4.0 g	50 mL				
Δ	4.0 g	4.0 g	50 mL				
X	8.0 g	4.0 g	50 mL				

Does this graph show a trend that is consistent with the class findings?

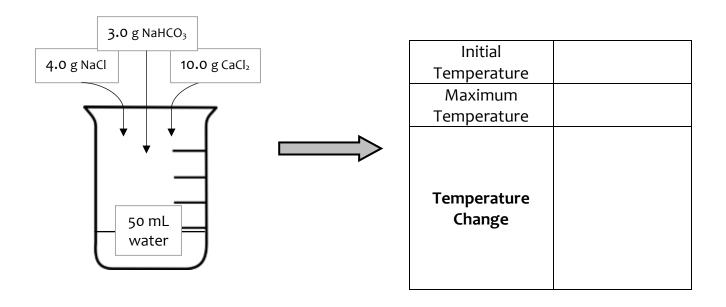
YES NO

6. Using data from the graphs, what temperature change would you expect to measure if you mixed 4.0 g NaCl, 3.0 g NaHCO₃, 10.0 g CaCl₂, and 50 mL water?

Which experiment(s) should you look at?

Graph 1: ○ △ X

Prediction: _____


Graph 2: \bigcirc \triangle X

Prediction:

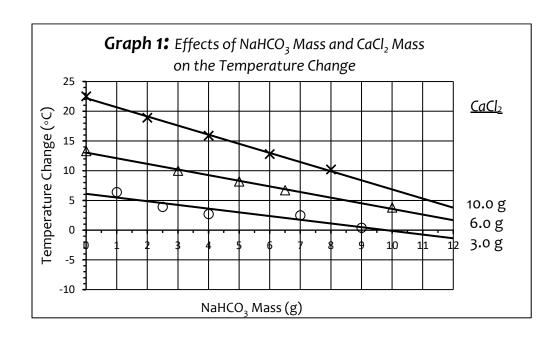
Expected
Temperature Change:
(Round to the nearest tenth)

7. What temperature change was measured when we mixed 4.0 g NaCl, 3.0 g NaHCO $_3$, 10.0 g CaCl $_2$, and 50 mL water?

8. How far was the measured temperature change from the expected temperature change?

- 9. Can we consider our expected temperature change correct? YES NO
- 10. Is the temperature change in the reaction predictable? YES NO

11.	Tempera	•	-	re change predictable?, which is
12.		faster speeds). The	•	of the particles using arrows (larger thermometers to represent their relative
	Kine	tic Energy: Low		Kinetic Energy: High
	•	•		
	Particle	es are moving	•	Particles are moving
13.		tions of the starting	materials.	nt? Fill out the table below with your
		Starting Material		Observations
		NaCl		
		CaCl₂		
		NaHCO ₃		
		Water		
14.	What did	d we <u>end</u> with?		


15.	Did a chemical reaction happen?	YES	NO
	Evidence:		
16.	Can energy be created or destroyed?	YES	NO
17.	When a chemical reaction gets warmer, energy has been _		
18.	Do all substances store the same amount of energy?	YES	NO
	Evidence:		

19. Summarize the effects of each substance on the temperature change and kinetic energy by circling the answer that best completes each statement.

NaCl Mass	
As NaCl mass increases, the temperature change	increases decreases stays the same
If we add more NaCl to the reaction, the kinetic energy	increases decreases stays the same
CaCl₂ Mass	
As CaCl₂ mass increases, the temperature change	increases decreases stays the same
If we add more CaCl₂ to the reaction, the kinetic energy	increases decreases stays the same
NaHCO ₃ Mass	
As NaHCO $_3$ mass increases, the temperature change	increases decreases stays the same
If we add more $NaHCO_3$ to the reaction, the kinetic energy	increases decreases stays the same

20. What would happen if we mixed 12.0 g of NaHCO₃, 3.0 g of CaCl₂, 4.0 g of NaCl, and 50 mL of water? (Graph 1 is shown again below to help you).

- 21. When a chemical reaction gets colder, energy has been ______.
- 22. Chemical reactions can or energy.
- 23. The energy transferred in a chemical reaction is affected by:

EXTRA PRACTICE

Directions:

Circle if the statement is a CLAIM, DATA, or an OPINION.

1.	а.	The Mariana Trench is 10,994 m deep and the Tonga Trench is 10,880 m deep.	Claim	Data	Opinion
	b.	Adults eat more vegetables than children do.	Claim	Data	Opinion
	с.	Oceans with temperatures over 25°C have more fish than cooler oceans.	Claim	Data	Opinion
	d.	115 people bought Oreos and 95 people bought Chips Ahoy.	Claim	Data	Opinion
	e.	Writing a procedure is hard.	Claim	Data	Opinion
	f.	The planet Venus has been observed in full, half, and quarter phases.	Claim	Data	Opinion
	g.	The largest reptile is the saltwater crocodile.	Claim	Data	Opinion
	h.	The more dust in the air, the prettier the sunset.	Claim	Data	Opinion

Directions for annotating: Underline <u>control(s)</u>, circle <u>changing variable(s)</u>, and box information about data collection.

2. a) Annotate the following results table.

	Variables	Trial A	Trial B	Trial C
	Solid A Mass:	4.0 g -		
	Solid B Mass:	6.0 g	9.0 g	12.0 g
	Solid C Mass:	5.0 g -		•
	Data	Trial A	Trial B	Trial C
ements/ tions:	Temperature Change (°C):	9.3°C	8.7°C	9.1°C
Measurements/ Observations:	Other:	Large amount of foam	Medium amount of foam	Small amount of foam

b`) Can	this	group	make a	a concl	lusion?
~	, ––		O. ~ ~ P			

YES NO I DON'T KNOW

c) Annotate the following possible conclusion.

Possible Conclusion: The greater the solid B mass, the less foam is made, because we observed, when the solid B mass was 6.0 g, there was a large amount of foam, and when the solid B mass was 12.0 g, there was a small amount of foam.

d) Is this a correct conclusion for the results table?	YES	NO	I DON'T KNOW
If NO, what is wrong with the conclusion?			

3. a) Annotate the following results table.

	Variables	Trial A	Trial B	Trial C
	Solid A Mass:	2.0 g	4.0	8.0
	Solid B Mass:	3.0 g	6.5 g	8.0 g
	Solid C Mass:	5.0 g -		-
	Data	Trial A	Trial B	Trial C
Measurements/ Observations:	Temperature Change (°C):	10.5°C	13.3°C	16.1°C
Measure	Other:	Small amount of foam	Medium amount of foam	Large amount of foam

b)	Can this	group	make a	conc	lusion?
----	----------	-------	--------	------	---------

YES NO I DON'T KNOW

c) Annotate the following possible conclusion.

Possible Conclusion: The greater the solid A mass, the greater the temperature change, because when the solid A mass was 2.0 g, the temperature change was 10.5°C, and when the solid A mass was 8.0 g, the temperature change was 16.1°C.

d) Is this a correct conclusion for the results ta	ole? YES	NO	I DON'T KNOW
If NO, what is wrong with the conclusion? _			•

4. a) Annotate the following results table.

	Variables	Trial A	Trial B	Trial C
	Solid A Mass:	7.0 g -		
	Solid B Mass:	5.0 g -		•
	Solid C Mass:	2.5 g	5.0 g	7.5 g
	Data	Trial A	Trial B	Trial C
Measurements/ Observations:	Temperature Change (°C):	7.2°C	10.2°C	14.4°C
Measure Observ	Other:	Medium amount of foam	Medium amount of foam	Small amount of foam

b) Can this group make a conclusion?

- YES
- NO

I DON'T KNOW

c) Annotate the following possible conclusion.

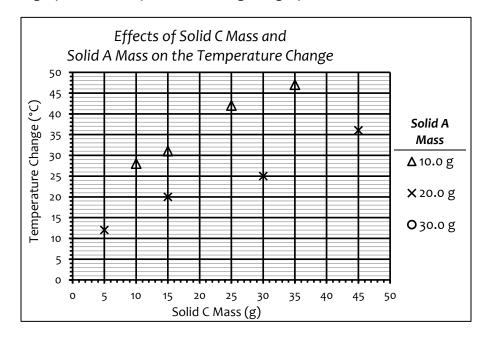
Possible Conclusion: The greater the solid C mass, the greater the temperature change, because when the solid C mass was 2.5 g, the temperature change was 14.4°C, and when the solid A mass was 7.5 g, the temperature change was 7.2°C.

d) Is this a correct conclusion for the results table?

YES

NO

I DON'T KNOW

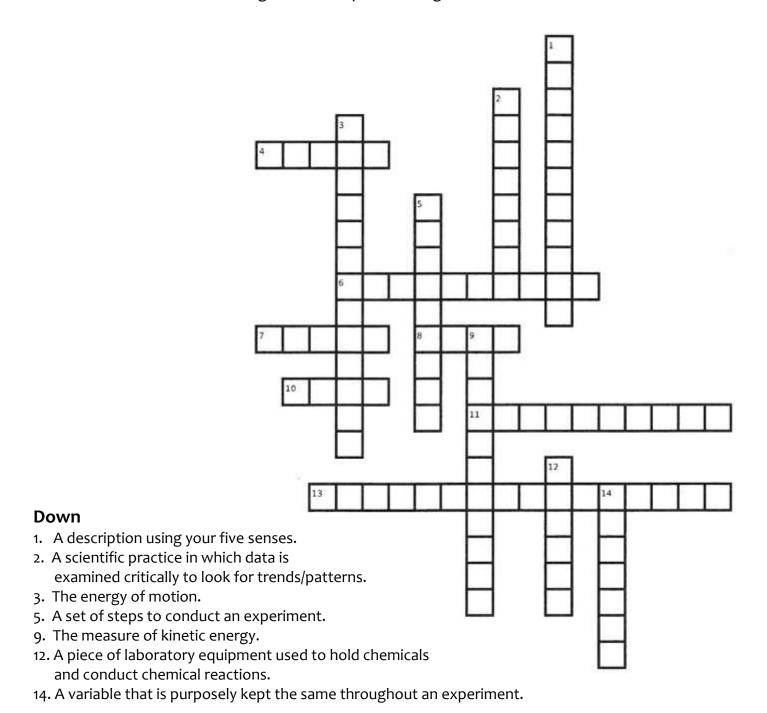

If NO, what is wrong with the conclusion? _____

Directions: Some scientists wanted to know how changing the solid C mass would affect the temperature change of the reaction. They did three experiments, using a different solid A masses each time, and plotted most of their data on a graph. Answer question 5 using the graph below.

- 5. a) Annotate the graph.
 - b) Plot the data points from the chart below on the graph using circles (**O**) as markers.

Substance A Mass:		
	30.0 g	
Substance	Change in	
C Mass	Temperature (°C)	
15	5	
20	10	
30	13	
40	22	

c) Draw trend lines on the graph for each data set.



d) In general, for all solid A masses, what happens to the temperature, as the solid C mass increases?

- e) What will the temperature change be when 10.0 g of A and 5.0 g of C are mixed?
- f) What will the temperature change be when 15.0 g of A and 35.0 g of C are mixed?

CROSSWORD PUZZLE

Directions: Fill out the following crossword puzzle using the clues below.

Across

- 4. A statement that can be tested.
- 6. A claim supported by data.
- 7. When data changes in one general direction, there is a ______.
- 8. Measurements and observations are the two types of ______.
- 10. The button you push to "zero" a scale.
- 11. What you expect to happen based off of previous data.
- 13. A process where substances are altered into different substances.

SciTrek is an educational outreach program that is dedicated to allowing 2nd-12th grade students to experience scientific practices firsthand. SciTrek partners with local teachers to present student-centered inquiry-based modules that not only emphasize the process of science but also specific grade level NGSS performance expectations. Each module allows students to design, carry out, and present their experiments and findings.

For more information, please feel free to visit us on the web at <u>scitrek.chem.ucsb.edu</u> or contact us by e-mail at scitrekelementary@chem.ucsb.edu.

SciTrek is brought to you by generous support from the following organizations:

If you would like to donate to the program or find out how you can get your company's logo on our notebooks please contact

scitrekelementary@chem.ucsb.edu